Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Rab5 GTPases are required for optimal TORC2 function.

Identifieur interne : 000255 ( Main/Exploration ); précédent : 000254; suivant : 000256

Rab5 GTPases are required for optimal TORC2 function.

Auteurs : Melissa N. Locke [États-Unis] ; Jeremy Thorner [États-Unis]

Source :

RBID : pubmed:30578283

Descripteurs français

English descriptors

Abstract

Target of rapamycin complex-2 (TORC2), a conserved protein kinase complex, is an indispensable regulator of plasma membrane homeostasis. In budding yeast (Saccharomyces cerevisiae), the essential downstream effector of TORC2 is protein kinase Ypk1 and its paralog Ypk2. Muk1, a Rab5-specific guanine nucleotide exchange factor (GEF), was identified in our prior global screen for candidate Ypk1 targets. We confirm here that Muk1 is a substrate of Ypk1 and demonstrate that Ypk1-mediated phosphorylation stimulates Muk1 function in vivo. Strikingly, yeast lacking its two Rab5 GEFs (Muk1 and Vps9) or its three Rab5 paralogs (Vps21/Ypt51, Ypt52, and Ypt53) or overexpressing Msb3, a Rab5-directed GTPase-activating protein, all exhibit pronounced reduction in TORC2-mediated phosphorylation and activation of Ypk1. Vps21 coimmunoprecipitates with TORC2, and immuno-enriched TORC2 is less active in vitro in the absence of Rab5 GTPases. Thus, TORC2-dependent and Ypk1-mediated activation of Muk1 provides a control circuit for positive (self-reinforcing) up-regulation to sustain TORC2-Ypk1 signaling.

DOI: 10.1083/jcb.201807154
PubMed: 30578283
PubMed Central: PMC6400565


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Rab5 GTPases are required for optimal TORC2 function.</title>
<author>
<name sortKey="Locke, Melissa N" sort="Locke, Melissa N" uniqKey="Locke M" first="Melissa N" last="Locke">Melissa N. Locke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA jthorner@berkeley.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:regionArea>
<placeName>
<settlement type="city">Berkeley (Californie)</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2019">2019</date>
<idno type="RBID">pubmed:30578283</idno>
<idno type="pmid">30578283</idno>
<idno type="doi">10.1083/jcb.201807154</idno>
<idno type="pmc">PMC6400565</idno>
<idno type="wicri:Area/Main/Corpus">000382</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000382</idno>
<idno type="wicri:Area/Main/Curation">000382</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000382</idno>
<idno type="wicri:Area/Main/Exploration">000382</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Rab5 GTPases are required for optimal TORC2 function.</title>
<author>
<name sortKey="Locke, Melissa N" sort="Locke, Melissa N" uniqKey="Locke M" first="Melissa N" last="Locke">Melissa N. Locke</name>
<affiliation wicri:level="2">
<nlm:affiliation>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<placeName>
<region type="state">Californie</region>
</placeName>
<wicri:cityArea>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
<affiliation wicri:level="3">
<nlm:affiliation>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA jthorner@berkeley.edu.</nlm:affiliation>
<country wicri:rule="url">États-Unis</country>
<wicri:regionArea>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley</wicri:regionArea>
<placeName>
<settlement type="city">Berkeley (Californie)</settlement>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The Journal of cell biology</title>
<idno type="eISSN">1540-8140</idno>
<imprint>
<date when="2019" type="published">2019</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Glycogen Synthase Kinase 3 (genetics)</term>
<term>Glycogen Synthase Kinase 3 (metabolism)</term>
<term>Guanine Nucleotide Exchange Factors (genetics)</term>
<term>Guanine Nucleotide Exchange Factors (metabolism)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (genetics)</term>
<term>Mechanistic Target of Rapamycin Complex 2 (metabolism)</term>
<term>Protein Kinases (genetics)</term>
<term>Protein Kinases (metabolism)</term>
<term>Saccharomyces cerevisiae (enzymology)</term>
<term>Saccharomyces cerevisiae (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (genetics)</term>
<term>Saccharomyces cerevisiae Proteins (metabolism)</term>
<term>Vesicular Transport Proteins (genetics)</term>
<term>Vesicular Transport Proteins (metabolism)</term>
<term>rab GTP-Binding Proteins (genetics)</term>
<term>rab GTP-Binding Proteins (metabolism)</term>
<term>rab5 GTP-Binding Proteins (genetics)</term>
<term>rab5 GTP-Binding Proteins (metabolism)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine (génétique)</term>
<term>Complexe-2 cible mécanistique de la rapamycine (métabolisme)</term>
<term>Facteurs d'échange de nucléotides guanyliques (génétique)</term>
<term>Facteurs d'échange de nucléotides guanyliques (métabolisme)</term>
<term>Glycogen Synthase Kinase 3 (génétique)</term>
<term>Glycogen Synthase Kinase 3 (métabolisme)</term>
<term>Protein kinases (génétique)</term>
<term>Protein kinases (métabolisme)</term>
<term>Protéines G rab (génétique)</term>
<term>Protéines G rab (métabolisme)</term>
<term>Protéines G rab5 (génétique)</term>
<term>Protéines G rab5 (métabolisme)</term>
<term>Protéines de Saccharomyces cerevisiae (génétique)</term>
<term>Protéines de Saccharomyces cerevisiae (métabolisme)</term>
<term>Protéines du transport vésiculaire (génétique)</term>
<term>Protéines du transport vésiculaire (métabolisme)</term>
<term>Saccharomyces cerevisiae (enzymologie)</term>
<term>Saccharomyces cerevisiae (génétique)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glycogen Synthase Kinase 3</term>
<term>Guanine Nucleotide Exchange Factors</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Vesicular Transport Proteins</term>
<term>rab GTP-Binding Proteins</term>
<term>rab5 GTP-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycogen Synthase Kinase 3</term>
<term>Guanine Nucleotide Exchange Factors</term>
<term>Mechanistic Target of Rapamycin Complex 2</term>
<term>Protein Kinases</term>
<term>Saccharomyces cerevisiae Proteins</term>
<term>Vesicular Transport Proteins</term>
<term>rab GTP-Binding Proteins</term>
<term>rab5 GTP-Binding Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Facteurs d'échange de nucléotides guanyliques</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Protein kinases</term>
<term>Protéines G rab</term>
<term>Protéines G rab5</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du transport vésiculaire</term>
<term>Saccharomyces cerevisiae</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexe-2 cible mécanistique de la rapamycine</term>
<term>Facteurs d'échange de nucléotides guanyliques</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Protein kinases</term>
<term>Protéines G rab</term>
<term>Protéines G rab5</term>
<term>Protéines de Saccharomyces cerevisiae</term>
<term>Protéines du transport vésiculaire</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Target of rapamycin complex-2 (TORC2), a conserved protein kinase complex, is an indispensable regulator of plasma membrane homeostasis. In budding yeast (
<i>Saccharomyces cerevisiae</i>
), the essential downstream effector of TORC2 is protein kinase Ypk1 and its paralog Ypk2. Muk1, a Rab5-specific guanine nucleotide exchange factor (GEF), was identified in our prior global screen for candidate Ypk1 targets. We confirm here that Muk1 is a substrate of Ypk1 and demonstrate that Ypk1-mediated phosphorylation stimulates Muk1 function in vivo. Strikingly, yeast lacking its two Rab5 GEFs (Muk1 and Vps9) or its three Rab5 paralogs (Vps21/Ypt51, Ypt52, and Ypt53) or overexpressing Msb3, a Rab5-directed GTPase-activating protein, all exhibit pronounced reduction in TORC2-mediated phosphorylation and activation of Ypk1. Vps21 coimmunoprecipitates with TORC2, and immuno-enriched TORC2 is less active in vitro in the absence of Rab5 GTPases. Thus, TORC2-dependent and Ypk1-mediated activation of Muk1 provides a control circuit for positive (self-reinforcing) up-regulation to sustain TORC2-Ypk1 signaling.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">30578283</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>02</Month>
<Day>26</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>03</Month>
<Day>09</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1540-8140</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>218</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2019</Year>
<Month>03</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>The Journal of cell biology</Title>
<ISOAbbreviation>J Cell Biol</ISOAbbreviation>
</Journal>
<ArticleTitle>Rab5 GTPases are required for optimal TORC2 function.</ArticleTitle>
<Pagination>
<MedlinePgn>961-976</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1083/jcb.201807154</ELocationID>
<Abstract>
<AbstractText>Target of rapamycin complex-2 (TORC2), a conserved protein kinase complex, is an indispensable regulator of plasma membrane homeostasis. In budding yeast (
<i>Saccharomyces cerevisiae</i>
), the essential downstream effector of TORC2 is protein kinase Ypk1 and its paralog Ypk2. Muk1, a Rab5-specific guanine nucleotide exchange factor (GEF), was identified in our prior global screen for candidate Ypk1 targets. We confirm here that Muk1 is a substrate of Ypk1 and demonstrate that Ypk1-mediated phosphorylation stimulates Muk1 function in vivo. Strikingly, yeast lacking its two Rab5 GEFs (Muk1 and Vps9) or its three Rab5 paralogs (Vps21/Ypt51, Ypt52, and Ypt53) or overexpressing Msb3, a Rab5-directed GTPase-activating protein, all exhibit pronounced reduction in TORC2-mediated phosphorylation and activation of Ypk1. Vps21 coimmunoprecipitates with TORC2, and immuno-enriched TORC2 is less active in vitro in the absence of Rab5 GTPases. Thus, TORC2-dependent and Ypk1-mediated activation of Muk1 provides a control circuit for positive (self-reinforcing) up-regulation to sustain TORC2-Ypk1 signaling.</AbstractText>
<CopyrightInformation>© 2019 Locke and Thorner.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Locke</LastName>
<ForeName>Melissa N</ForeName>
<Initials>MN</Initials>
<Identifier Source="ORCID">0000-0001-8162-1471</Identifier>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Thorner</LastName>
<ForeName>Jeremy</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-2583-500X</Identifier>
<AffiliationInfo>
<Affiliation>Division of Biochemistry, Biophysics, and Structural Biology and Division of Cell and Developmental Biology, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA jthorner@berkeley.edu.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM021841</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2018</Year>
<Month>12</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>J Cell Biol</MedlineTA>
<NlmUniqueID>0375356</NlmUniqueID>
<ISSNLinking>0021-9525</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D020662">Guanine Nucleotide Exchange Factors</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C583270">Muk1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D029701">Saccharomyces cerevisiae Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C099285">VPS9 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D033921">Vesicular Transport Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.-</RegistryNumber>
<NameOfSubstance UI="D011494">Protein Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.-</RegistryNumber>
<NameOfSubstance UI="C060388">YPK2 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076225">Mechanistic Target of Rapamycin Complex 2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.26</RegistryNumber>
<NameOfSubstance UI="D038362">Glycogen Synthase Kinase 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.12.1</RegistryNumber>
<NameOfSubstance UI="C068124">MCK1 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.1.-</RegistryNumber>
<NameOfSubstance UI="C086866">VPS21 protein, S cerevisiae</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020691">rab GTP-Binding Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.6.5.2</RegistryNumber>
<NameOfSubstance UI="D020696">rab5 GTP-Binding Proteins</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D038362" MajorTopicYN="N">Glycogen Synthase Kinase 3</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020662" MajorTopicYN="N">Guanine Nucleotide Exchange Factors</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076225" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 2</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011494" MajorTopicYN="N">Protein Kinases</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012441" MajorTopicYN="N">Saccharomyces cerevisiae</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029701" MajorTopicYN="N">Saccharomyces cerevisiae Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D033921" MajorTopicYN="N">Vesicular Transport Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020691" MajorTopicYN="N">rab GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020696" MajorTopicYN="N">rab5 GTP-Binding Proteins</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2018</Year>
<Month>07</Month>
<Day>21</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2018</Year>
<Month>11</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2018</Year>
<Month>12</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2018</Year>
<Month>12</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>2</Month>
<Day>27</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2018</Year>
<Month>12</Month>
<Day>23</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">30578283</ArticleId>
<ArticleId IdType="pii">jcb.201807154</ArticleId>
<ArticleId IdType="doi">10.1083/jcb.201807154</ArticleId>
<ArticleId IdType="pmc">PMC6400565</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Nat Commun. 2017 Nov 23;8(1):1729</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29170376</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2017 Mar 07;6:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28264193</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2017 Nov 01;7(4):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29104218</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Yeast. 2007 Sep;24(9):767-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17534848</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1999 May 17;18(10):2782-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329624</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genes Dev. 2018 Dec 1;32(23-24):1576-1590</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30478248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 1994 Apr;125(2):283-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8163546</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2016 Sep 12;214(6):653-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27621362</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2003 Mar;14(3):1204-20</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12631735</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Sci Signal. 2010 Feb 16;3(109):ra12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20159853</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Jul;23(13):2516-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22593206</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 1993 May 7;73(3):585-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8387896</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2017 Feb;216(2):343-353</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28143890</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1999 May 21;274(21):15284-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10329739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1994 Mar 15;13(6):1297-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8137814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2009 Sep 25;325(5948):1682-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19779198</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Oct 4;288(40):28704-12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23979137</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Rev Mol Cell Biol. 2010 Jan;11(1):9-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20027184</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2018 Aug 15;29(17):2128-2136</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29927351</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Mol Sci. 2015 Jan 09;16(1):1509-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25584613</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2018 Jun 01;8(2):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29865216</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2011 Apr 15;22(8):1353-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21325627</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 1999 Feb 25;9(4):186-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10074427</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2005 Apr 26;15(8):702-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15854902</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Nov 19;110(47):18976-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24194547</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Traffic. 2012 Oct;13(10):1411-1428</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22748138</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2006 Jan;16(1):27-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16330212</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Discov. 2016 Mar 08;2:15049</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27462445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19222-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080611</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Microbiology. 2004 Oct;150(Pt 10):3289-304</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15470109</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1995 Nov;108 ( Pt 11):3509-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8586662</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2010 Jan 5;107(1):34-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19966303</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2013 Jun 21;288(25):18162-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23612966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Semin Cancer Biol. 2018 Feb;48:1-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28591657</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2017 Jun 30;7(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28788436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>ACS Chem Biol. 2012 Jun 15;7(6):982-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22496512</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets Infect Disord. 2004 Dec;4(4):311-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15578972</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2016 Jun;41(6):532-545</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27161823</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Dec 22;95(26):15400-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9860980</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1536-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22307609</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eukaryot Cell. 2015 May;14(5):442-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25724885</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Chem Soc Rev. 2009 Oct;38(10):2876-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19771334</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2014;548:189-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25399647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS Lett. 2017 Sep;591(18):2803-2815</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28792590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2007 Dec 12;26(24):4946-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18034155</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 2015 Oct 15;128(20):3757-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26359301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Mar 15;26(6):1119-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25609093</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2009 Feb;37(Pt 1):223-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Cell Biol. 2012 Apr 15;14(5):542-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22504275</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2009 Feb;37(Pt 1):289-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19143648</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2017 Sep;207(1):179-195</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28739659</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Rep. 2013 Dec 26;5(6):1725-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24360963</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Cell Biol. 2016 Feb;26(2):148-159</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26546292</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2017 Mar 9;168(6):960-976</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28283069</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Proteomics. 2008 Jul;7(7):1389-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18407956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 2015 Oct 9;350(6257):211-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26338797</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 2002;350:3-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12073320</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Metab. 2008 Feb;7(2):148-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18249174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2005 Aug;25(16):7239-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16055732</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1996 Oct 4;262(4):473-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8893857</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 2017 Dec 21;552(7685):368-373</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29236692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2002 Sep;13(9):3005-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12221112</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2016 Dec 15;27(25):4043-4054</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27798240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1984 Aug 25;259(16):10606-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6088507</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Histol Histopathol. 2010 Jan;25(1):99-112</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19924646</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Sci. 1993 Nov;106 ( Pt 3):823-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8308065</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2005 Sep 9;122(5):735-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16143105</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Small GTPases. 2016 Oct;7(4):252-256</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27427966</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proteins. 2013 Nov;81(11):1857-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23852738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2017 Jun 28;8(38):63392-63404</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28968999</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Cell. 2017 Dec 11;32(6):807-823.e12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">29232555</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2008 Nov 14;135(4):714-25</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18976803</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Dec 11;19(1):40-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22157956</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell. 2002 Sep;10(3):457-68</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12408816</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1978 Oct;75(10):4962-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">368805</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Microbiol. 2014;68:377-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25002088</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(10):1513-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19798084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 2016 May;203(1):299-317</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26920760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2012 Jun;23(12):2388-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22535525</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Dec;11(12):4241-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11102521</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2005 Sep 2;280(35):30697-704</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16002396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 Jul;10(7):676-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23749301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2001 Nov 2;313(4):903-19</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11697912</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2015 Aug 14;4:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26274562</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Biol. 2010 Nov 23;20(22):1975-82</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21035342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2012 Nov;32(22):4705-17</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22988299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1994 Jan;5(1):105-18</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8186460</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Jul 25;289(30):20970-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24923442</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Feb 24;287(9):6089-99</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22207764</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biomolecules. 2017 Sep 05;7(3):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28872598</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Genetics. 1989 May;122(1):19-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2659436</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 1995 Jun 15;211(2):396-403</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7794249</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 2017 Feb 15;36(4):397-408</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28096180</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2009 Mar;20(5):1565-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19144819</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2000 Feb;11(2):613-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10679018</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biotechniques. 2007 Jul;43(1 Suppl):25-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17936939</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 2013 May;38(5):233-42</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23465396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Soc Trans. 2016 Apr 15;44(2):474-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27068957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Cell Biol. 2010 Aug;22(4):461-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20466531</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 1996 May;16(5):2369-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8628304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Circ Res. 2008 Dec 5;103(12):1451-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19008479</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 2016 Dec 01;473(23):4311-4325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27671892</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Elife. 2014 Oct 03;3:</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25279700</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cells. 2013 Jun;35(6):463-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23694989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 2015 Apr 1;26(7):1345-56</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25673804</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1966 Oct 31;127(2):325-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5964977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Cell Biol. 2017 Mar 17;37(7):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28069741</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Cell. 1999 Jun;10(6):1873-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10359603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Methods. 2013 May;10(5):407-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23524392</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Aug 26;105(34):12212-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18719124</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
<settlement>
<li>Berkeley (Californie)</li>
</settlement>
</list>
<tree>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Locke, Melissa N" sort="Locke, Melissa N" uniqKey="Locke M" first="Melissa N" last="Locke">Melissa N. Locke</name>
</region>
<name sortKey="Thorner, Jeremy" sort="Thorner, Jeremy" uniqKey="Thorner J" first="Jeremy" last="Thorner">Jeremy Thorner</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000255 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000255 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:30578283
   |texte=   Rab5 GTPases are required for optimal TORC2 function.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:30578283" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020